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In this paper, we present first evidence of block accumulations from the north-eastern coasts of 
Tunisia induced by extreme wave events. Chronological aspects of the block movement and possible 
event sources are discussed. 

2 Palaeotsunami studies in the Mediterranean  
Evidence for extreme wave events during the Holocene is known from a number of areas in the 
Mediterranean, and in most cases these events are associated to tsunami. In particular, numerous 
historical reports on tsunamis exist for the central and eastern Mediterranean, especially for Italy and 
Greece, summarized in tsunami catalogues (for instance Soloviev et al. 2000, Tinti et al. 2004). In 
these catalogues, additional information on event-related earthquakes, tsunami wave heights, 
inundated areas and other effects is recorded. 

 

Figure 1: a) Overview of the Mediterranean with main tectonic structures (map based on Facenna et al. 2001, 
Wortel & Spakman 2000). White boxes mark reports on sedimentary tsunami imprints. The study 
area presented in this paper is marked by a grey box. b) Study area, north-western coast of Cap Bon, 
NE Tunisia, with presented locations of block findings. The coastal morphology shows a typical bay 
and headland configuration. 

Sedimentary evidence for palaeotsunami events in the central Mediterranean proves the occurrence of 
tsunami events since the mid-Holocene. Especially the eruption of Santorini in the Bronze Age was 
subject to geological investigations (Bruins et al. 2008, Dominey-Howes et al. 2000a, 
McCoy & Heiken 2000, Minoura et al. 2000, Scheffers & Scheffers 2007). More recent events also 
left sedimentary signatures such as the 1956 tsunami in the southern Aegean Sea for which imbricated 
pebbles on the island of Astypalaea are described (Dominey-Howes et al. 2000b). Korteekaas (2002) 
and Kontopoulos & Avramidis (2003) gave evidence for tsunamigenic sediments in the Corinthian 
Gulf. Scheffers et al. (2008) found palaeotsunami imprints on the coasts of the southern and south-
western Peloponnese. For northwestern Greece, Vött et al. (2006, 2007, 2008, 2009, 2010), May 
(2010) and May et al. (2008) presented manifold sedimentary evidence of tsunami influence on the 
Preveza-Lefkada coastal zone.  
Several studies were also conducted on tsunami induced changes of coastal morphology such as 
boulder and block accumulations along rocky shorelines (Mastronuzzi & Sanso 2000, 2004; 
Scicchitano et al. 2007) and washover fans (Gianfreda et al. 2001) in southern Italy. Further evidence 
for extreme wave events was presented by Reinhardt et al. (2006) for the Israeli coast close to the 
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ancient harbour of Cesarea, and Morhange et al. (2006) gave evidence for wave emplaced boulders at 
the coast of Lebanon. From the North African coast, Maouche et al. (2009) report on large boulder 
accumulations in northern Algeria and suggest a tsunamigenic origin and Kelletat (2005) describes 
wave transported boulders in southern Mallorca. Frébourg et al. (2007) describe a possible tsunami 
layer found within eolianites from eastern Tunisia. Block accumulations are also known from 
Morocco (Mhammudi et al. 2008), but may be related to event sources in the Atlantic Ocean, 
comparable to the 1755 earthquake and tsunami of Lisbon (Andrade 1992, Whelan & Kelletat 2005).  
When considering possible source mechanisms for tsunami events in the Mediterranean, several 
potential triggers must be taken into account (see also figure 1). Especially the central Mediterranean 
exhibits a high seismic activity. Numerous strong earthquakes are reported from the subduction zone 
of the Hellenic Arc or major fault zones. It is well known, that vertical crustal movements of terrestrial 
and submarine origin have a high tsunamigenic potential in this region (for instance Benetatos et al. 
2004, Pirazzoli 1986). In northwestern Greece, the Cefalonia transform fault (CF), situated west of the 
Ionian Islands Cefalonia and Lefkada, connects this zone of subduction with an area of continent-
continent collision beginning off the coast of southern Epirus (figure 1). The CF also shows a 
remarkably high seismic activity and has been responsible for numerous strong earthquakes during 
history (Benetatos et al. 2005, Cocard et al. 1999, Louvari et al. 1999, Sachpazi et al. 2000, 
Papadopoulos et al. 2003). In the western Mediterranean, several tsunamigenic earthquakes are known 
from south-eastern Spain and North Africa (Alasset et al. 2003, Gràcia et al. 2006). Moreover, 
Pareschi et al. (2006) suggest that flank collapses of the Etna volcano, occurring during the middle 
Holocene, resulted in mega tsunami events effecting large parts of the Mediterranean. From the central 
Ionian Sea and the Sirte basin to the north of the African coast, several turbidite layers have been 
detected in the deep sea geological record. These layers suggest repeated and extensive submarine 
mass movements in the area that may also have produced large tsunami events in the central 
Mediterranean (Hieke 2000, Hieke & Werner 2000). Further potential tsunami triggers are cosmic 
impacts for which, however, no evidence has yet been found in the Mediterranean. 

3 Study area 
Field survey was carried out along the north-western coast of Cap Bon, NE Tunisia (figure 1). In 
general, the Geology of the low lying coastal areas at Cap Bon is dominated by Tertiary and early 
Pleistocene sequences, mainly consisting of marine sandstones and aeolianites (Mensching 1979). The 
coastal morphology is characterized by slightly elevated marine terraces, most likely of late 
Pleistocene origin (Jedoui et al. 1998, Morhange & Pirazzoli 2005). 

 

Figure 2: Cliff top platform with field of dislocated blocks, around 50 m distant from the sea. Inlay: View of 
Pleistocene terrace with cliff top platform reaching up to 4 m a.s.l. Elevation of cliff ~ 2 m. Note 
typical coastal configuration with bays and headlands. 



4  May et al. 
 
 

They form, in most cases, small headlands, which are characterized by a well-developed cliff, up to 5 
m high, and a cliff top platform, up to 200 m wide (figure 2). These promontories are separated from 
each other by small and narrow bays with, at some locations, sandy beaches. Well-defined notches 
document a comparatively stable relative sea level for the area for the late Holocene. The cliff top 
platforms are free of vegetation and characterized by intense karstification and, in the littoral and 
supralittoral zone, extensive rock pool formation.  

4 Methods 
During August 2008, a geomorphological field survey was carried out along the northern shorelines of 
Tunisia in order to detect geo-scientific imprints of extreme wave events. In this context, we found 
evidence for extreme wave emplaced blocks, up to at least ~ 5 m³ and 11 t. 
Block fields detected during the geomorphological survey were documented and partly measured. The 
sizes of selected boulders were estimated based on measurements of the x-, y- and z-axes using a 
measuring tape. All the dislocated blocks and boulders were examined for rock pools on their surfaces. 
The number and the dimension of different rock pool generations were studied in order to get 
information on different phases of boulder transport. For weight calculation of the transported 
boulders, rock density was estimated to ~2.2 g/cm³ (Scicchitano et al. 2007). GPS points were 
measured for the study areas and for the sampling points.  

5 Results and discussion 
Location one (El Haouaria A, 37°03'9.08"N; 10°56'46.91"E, figs. 1 and 3) is situated 5.5 km west of 
the City of El Haouaria. Here, the cliff top platform reaches an elevation of around 4 m a.s.l. (above 
mean sea level) and is covered by numerous blocks and boulders, up to 3 m³ in size. The blocks are 
assembled in block fields and can be followed up to a distance of 50 m onshore. 

 

Figure 3:  a) Block field at El Haouaria site A. Cliff top platform lies at around 3 m a.s.l. Note person (around 
1.80 m) as scale. b) Overturned block of ca. 2.7 m³ in size with former surface (rock pool generation 
I) at its bottom side. c) Rock pool generation II on top of the recent surface. 
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Most blocks show extensive rock pools at their surface. These rock pools are usually formed by bio-
erosional processes in the littoral zone (Laborel & Laborel-Deguen 1994). Found in the present 
constellation, they clearly prove that the blocks were transported from the littoral zone to their current 
position. Most probably, the rock slabs and blocks originate from the cliff front area. 
Some of the dislocated blocks are overturned, with the former surface facing downwards. For the 
block depicted in figure 3, which is around 2.7 m³ in size and weighing approximately 6 t, this is 
indicated by well-developed rock pools, up to 35 cm deep and 1 m wide, found on the lower side of 
the block (figure 3b, rock pool generation I). A comparatively long period of rock pool formation was 
thus needed before the block was dislocated and transported to its recent position. Clear indications of 
bio-erosion by gastropods point to the formation of the rock pool in a littoral environment. Moreover, 
a second generation of rock pools (rock pool generation II) was observed on top of the recent surface. 
This rock pool generation shows a much smaller depth and width of around 8 cm and 40 cm, 
respectively, and must have developed subsequent to the transportation of the block (figure 3c). Thus, 
for this block, the period of time between the start of the formation of rock pool generation I and its 
displacement must have been much longer than the period of time since its transport. As not more than 
two rock pool generations could be observed, a displacement of the block during one singular event 
can be assumed. 

 

Figure 4: a) Block field at El Haouaria site B showing several imbrication trains; the cliff top platform lies at 
around 1 m a.s.l. Note person (around 1.80 m) as scale. b) and c) Imbrication trains – blocks are 
typically tilted in wave direction. Inlay in b) shows two rock pool generations found for the second 
block within the imbrication train (grey – rock pool generation I, white – rock pool generation II). 

Location two (El Haouaria B, 37°03'5.00"N; 10°58'9.20"E, figure 1 and 4) is located around 2 km east 
of location one and some 3.5 km west of El Haouaria. Dislocated blocks and boulders were 
encountered on top of an elevated marine terrace, about 1 m a.s.l. As illustrated in figure 4, blocks and 
rock-slabs are abundant and are assembled in a block field, extending approximately 3000 m². Within 
the block field, several trains of imbricated blocks, up to 5 m3 in size, were found, consisting of up to 6 
tilted blocks or rock-slabs. The imbrication of the blocks proves their extreme wave generated 
displacement and deposition.  
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Several blocks exhibit rock pools on their surface. Comparable to the findings at location El Haouaria 
A, two generations of rock pool formation can be observed, regardless of the position of the hosting 
blocks within the imbrication train (figures 4b and 5). Rock pool generation I appears to be deeper and 
wider than rock pool generation II (figure 5). Thus, the period of formation of rock pool generation I 
must have been longer than the one of rock pool generation II. Due to these findings we suggest that 
(i) the imbrication trains were arranged by only a single extreme wave event, and (ii) the blocks have 
not been shifted or tilted and thus remained in one and the same position since the time of their 
dislocation. 
Along the coasts of Cape Bon, we thus encountered numerous wave emplaced blocks and boulders on 
top of the elevated terrace platforms lying up to 5 m a.s.l. and up to 50 m distant from the sea. In both 
study areas, two rock pool generations were observed on the dislocated blocks. In general, rock pool 
generation I appears to be considerable deeper and wider than rock pool generation II. Regarding the 
size of the rock pools, it can be noticed that, at both locations, rock pool generation II has only about 
¼ of the size of rock pool generation I. These findings indicate that, at both sites, a comparable period 
of time was needed for the formation of rock pool generation II. We thus conclude that the 
displacement of the blocks occurred during the same event.  

 

Figure 5:  a) Imbricated block (~ 5.3 m³, ~ 11 t) with two rock pool generations. b) Rock pool generations I and 
II found on top of block shown in a). 

As for the situation at El Haouaria site B shown in figure 5, due to the low lying terrace surface, it is 
assumed that the blocks are often flooded during usual winter storms. However, no more than two 
different rock pool generations were observed for all investigated blocks. These findings thus 
document a stable position of the blocks since their displacement and, in some cases, even since the 
related formation of imbrication trains. A recurrent transport, shifting or tilting of the investigated 
blocks during winter storms can thus be excluded. 
During the last decades, several authors reported on cemented marine sediments of mid- to late 
Holocene age along the southern Tunisian coasts, found in elevations up to 1 m a.s.l. (for instance 
Jedoui et al. 1998, Morhange & Pirazzoli 2005). According to these authors, this marine sequence 
developed during a mid-Holocene sea level high stand. Vött et al. (2010) present findings of 
beachrock-type calcarenitic tsunamites from three different coastal areas in western Greece, partly 
associated to dislocated blocks. Within the context of the results presented in this paper, the deposition 
of fine-grained marine sediments above present mean sea level along the Tunisian coasts may possibly 
be explained by extreme wave events, rather than by a relative sea level high stand. However, further 
studies on these cemented marine deposits are needed to answer this question. 
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6 Conclusions 
Block fields along rocky shorelines, consisting of rock-slabs, blocks and boulders, partly imbricated, 
are reported from all over the world. Their formation is linked to tsunami- or other extreme wave 
events, such as huge winter storm surges or hurricanes (for instance Goto et al. 2009, Kelletat & 
Schellmann 2001, Nott 2003a, Scheffers et al. 2005, Scicchitano et al. 2007, Switzer & Burston 2010, 
Williams & Hall 2007). However, it remains difficult to realize an appropriate determination of the 
event source, and the application of hydraulic equations dealing with the wave energy necessary for 
the wave induced transportation of blocks, which may be helpful to estimate the event source and 
intensity, still exhibits considerable uncertainties (see for instance Nott 2003a, 2003b, Switzer & 
Burston 2010). 
This paper documents, for the first time, extreme wave emplaced blocks and boulders on the coast of 
northeastern Tunisia. Due to our findings, the following conclusions can be made considering the 
formation of the block fields: 
1. At the north-western shore of Cap Bon peninsula, block dislocation and deposition occurred up to 

5 m a.s.l. The emplaced blocks are assembled in fields on top of elevated marine terraces and have 
been transported up to 50 m inland. 

2. Several blocks and slabs were overturned or tilted by wave activity. Numerous blocks exhibit two 
rock pool generations. At study site El Haouaria B, blocks show distinct imbrication and are 
arranged in imbrication trains of up to 6 tilted blocks. 

3. The existence of two rock pool generations on top of numerous displaced blocks suggests one 
singular event responsible for displacement. Considering the dimensions of the rock pool 
generations, the period of time since dislocation of the blocks is considerably shorter than the 
period of time before their displacement when the blocks were lying in their original positions. 

4. A stable position of the blocks before and since the time of movement can be assumed. Therefore 
annually recurring winter storm activities do not shift or move the blocks, although, due to the low 
lying cliff top platform, some of the blocks most likely are overflown by sea water during winter 
storms. 

5. Due to these findings, a tsunami event rather than a storm has to be assumed for the deposition of 
the observed block fields. Also regarding the stable position of the blocks since their 
displacement, a storm-generated origin seems to be unlikely. 

In general, the question of determining and localizing the event source and the ability to distinguish 
between tsunami and storm origin is important in palaeo-event research; further analytical studies are 
required to improve our understanding of the geomorphological and sedimentological fingerprints of 
the different kinds of extreme wave event deposits. 
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